
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: 0143-1161 (Print) 1366-5901 (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Object-based feature selection for crop
classification using multi-temporal high-resolution
imagery

Qian Song, Mingtao Xiang, Ciara Hovis, Qingbo Zhou, Miao Lu, Huajun Tang
& Wenbin Wu

To cite this article: Qian Song, Mingtao Xiang, Ciara Hovis, Qingbo Zhou, Miao Lu, Huajun
Tang & Wenbin Wu (2019) Object-based feature selection for crop classification using multi-
temporal high-resolution imagery, International Journal of Remote Sensing, 40:5-6, 2053-2068,
DOI: 10.1080/01431161.2018.1475779

To link to this article:  https://doi.org/10.1080/01431161.2018.1475779

Published online: 05 Jul 2018.

Submit your article to this journal 

Article views: 221

View related articles 

View Crossmark data

Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2018.1475779
https://doi.org/10.1080/01431161.2018.1475779
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2018.1475779
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2018.1475779
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2018.1475779&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2018.1475779&domain=pdf&date_stamp=2018-07-05
https://www.tandfonline.com/doi/citedby/10.1080/01431161.2018.1475779#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01431161.2018.1475779#tabModule


Object-based feature selection for crop classification using
multi-temporal high-resolution imagery
Qian Songa, Mingtao Xianga, Ciara Hovisb, Qingbo Zhoua, Miao Lua, Huajun Tanga

and Wenbin Wua
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ABSTRACT
With high-resolution remote-sensing data, there are numerous
possible features for object description, making the selection of
optimal features a time-consuming and subjective process. While
substantial efforts have been made to compare the utility of
feature selection metrics, less attention has been paid to the
efficiency of such in the context of object-based image analysis.
In this study, the statistical measurement z-score was used to
ensure compatibility with objects. We assessed the feasibility of
a z-score method, and then ranked and reduced input features
using a backward elimination technique. The results showed that
separability can be efficiently estimated based on z-score values,
and the near-infrared band performed the best for crop classifica-
tion. A straightforward trend was observed, and the optimal fea-
ture set was created, which was a combination of spectral,
temporal, texture information and vegetation indices. These fea-
tures complement one another to help increase crop map accu-
racy. For the 40% of the entire sample sizes, the optimal feature
sets produced the best trade-off between the number of inputs
and classification accuracy, with the misclassification error of
7.09%. Additionally, reliable crop maps were obtained, with the
overall accuracy of 92.64%, and the z-score method showed great
potential for the separability of crops at object scale using remo-
tely sensed multi-temporal data.
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1. Introduction

Having an accurate and reliable understanding of the distribution of crop types is critical
for both decision-making and monitoring applications, e.g. crop acreage estimation, yield
forecasting, growth monitoring, and hazard prediction (Belgiu and Csillik 2018; Mkhabela
et al. 2011). Remote sensing plays an important role in obtaining crop spatial distribution
information from regional to global scales due to its spatially explicit representation as
well as its frequent temporal coverage (Pan et al. 2012; Song et al. 2017). Currently, with
the development of remote sensing, high-resolution imagery has begun to be widely used
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for crop mapping (Han et al. 2014; Singha, Wu, and Zhang 2017; Vieira et al. 2012). The
traditional pixel-based classification method focused only on the spectral characteristics
of high-resolution satellite images, therefore being unable to incorporate size, shape,
texture, pattern, and contextual information (Peña et al. 2014; Zhang et al. 2017).
Alternatively, object-based image analysis (OBIA) considers the spatial location and con-
text of homogeneous pixels, allowing for crop type classification and crop growth mon-
itoring at object level (Duro, Franklin, and Dub 2012). OBIA can extract meaningful image
objects by segmentation and generate texture and spatial features in addition to spectral
information. A wide range of information at the object level can help to increase the
capacity of crop identification.

Many studies reveal that remote-sensing data can provide a diversity of multi-tem-
poral, spectral and spatial features that well describe phenological changes of crops,
many of which have been widely used for crop mapping activities (Costa et al. 2014; Hu
et al. 2017; Mulianga et al. 2015). The crop growth stage, canopy structure, planting
patterns, and soil background not only correspond to the reflectance signal captured by
the sensor but also relate to the derived vegetation indices (Peña-Barragán et al. 2011).
Most crop classifications methods focus on either the complete image spectral resolu-
tion of a time series or different vegetation index temporal profiles, e.g. normalized
difference vegetation index (NDVI) and enhanced vegetation index (Peña and Brenning
2015). Apart from multi-spectral time series data, texture features have been used to
define the structural and contextual attributes of every crop at a parcel scale and enrich
the information available for crop mapping and monitoring (Patil and Lalitha 2012).
These features are based either on spectral properties of crops and their canopy or on
textural properties of the crop structure or in a combination where both are of particular
interest. However, the availability of hundreds of multi-temporal multiple bands and
their derivations as well as spatial-temporal features can make the determination of
optimal features a time consuming or subjective process. Thus, knowing how to opti-
mally use this wealth of information is crucial.

To address the problems associated with large volumes of features, various feature
selection methods involving separation distances for image classes have been investi-
gated. The well-known Jeffries–Matusita (JM) distance has been widely used to measure
the separability of crops (Hao et al. 2015; Murakami et al. 2001). The median
Mahalanobis distance, as a statistical separability criterion, is utilized to highlight the
individual and combined influence of spectral and temporal features in land-cover
classification (Carrao, Goncalves, and Caetano 2008). Besides those mathematical dis-
tance metrics, graphical methods and different embedded approaches such as the
feature importance within Random Forest involve separation distances for image classes
(Gao et al. 2015; Johansen and Phinn 2009). Given the large number of possible features
for object description, substantial efforts have been made to compare the utility of
feature selection metrics. However, less feature selection methods have been used in
conjunction with OBIA.

To address this knowledge gap, the objective of this study uses a statistical measure-
ment of z-score to (1) estimate the separability of spatio-temporal features based on
Gaofen-1 temporal data at object level; (2) characterize the relatively small field size of
the crops to find optimal combinations of feature sets and training sample sizes to
classify the crop types of interest. We first determined the potential of each object-based
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feature for crop mapping. Then the classification performance of each feature set was
evaluated. We evaluated the stability of optimal feature sets when different training
sample sets are used. Finally, we assessed the accuracy of crop mapping based on the
optimal feature and training sample sets using the machine-learning Support Vector
Machine (SVM).

2. Study area and data sets

2.1. Study area

Beian City is located approximately between 47°32ʹ24ʺ N and 48°34ʹ12ʺ N latitude and
126°15ʹ36ʺ E and 127°30ʹ00ʺ E longitude in northeast China (Figure 1). It has a long and
frigid winter and a short and cool summer, with an average annual temperature of −0.6°
C to 2.7°C decreasing from southeast to northwest. Its annual average precipitation
ranges from 500 to 700 mm, which is mostly concentrated in summer. Beian City is one
of the most important production regions in northeast China. Nicknamed as the
‘Window for government decision-making’, this subarctic city is regarded as the key
monitoring area for adjustment of crop planting structure. Its main crops include
soybeans and corn, with little rice and wheat, all of which are harvested once each
year due to the limited hours of sunshine and accumulated heat. Each crop has a well-
defined crop calendar and unique seasonal growth pattern. For instance, soybean in
Beian City is generally sowed in mid-May to late May, proceeding emergence, three
leaves, seven leaves, blooming, bearing pod, filling seed, senescence, and harvested in
late-September. The crop calendar for corn is from late April to end of September, and
for wheat it is from early April to late July. Rice is transplanted in early June and
harvested in late September, experiencing a relatively long growing period.

2.2. Data collection and processing

Launched on 26 April 2013, the Gaofen-1 satellite (GF-1) represents the first optical
satellite of the ‘Chinese high-resolution satellite’ programme. The GF-1 satellite carries
four medium spatial resolution wide field-of-view (WFV) cameras. The multispectral
images obtained from GF-1 WFV sensor has coverage of 450–890 nm and four optical
bands (i.e. blue, green, red, and near-infrared) at a 16 m resolution. The specification of
GF-1 WFV sensor is listed in Table 1.

Spring wheat is planted earliest in April, and most crops are harvested in late
September. Thus, we selected four scenes of cloud-free GF-1 WFV data ranging from
no crop cover stage to crop harvest stage (Table 2). The data were downloaded from the
China Centre for Resource Satellite Data and Application (http://www.cresda.com/CN/).
Radiometric calibration using the calibration coefficient provided by CCTSDA was per-
formed for all the GF-1 WFV image pixels. Atmospheric corrections using Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes module were implemented. The
ortho-rectification based on the rational polynomial coefficient file in system was also
performed in ENVI as well. All high-quality imageries were georeferenced to UTM WGS84
(zone 52N-WGS84) projection system using the pan band of Landsat-8 images acquired
on 24 September 2014 in Beian.
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Figure 1. The geolocation of study area, with the Gaofen Satellite no. 1 wide field-of-view cameras
(GF-1 WFV) 16 m false colour image (R = near-infrared, G = Red, B = G) acquired on 24 April 2014.

Table 1. Specification of GF-1 WFV sensor.

Satellite Sensor Bands
Wavelength range

(nm)
Spatial resolution

(m) Swath width (km)
Repeat cycle

(day)

GF-1 WFV 1 (Blue) 450–520 16 800 (four cameras
combined)

4
2 (Green) 520–590
3 (Red) 630–690
4 (near-
infrared)

770–890
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2.3. Field sample data

To assess the performance of crop classification, an extensive field survey was carried
out in summer. In this study, a distance of no less than 1 km was chosen as the sampling
interval collecting 1777 sampling points. We collected 1121 crop (corn, soybean, rice,
and wheat) samples and 626 non-crop classes (mainly village, road, water, forest, and
grassland) samples through field surveys. Only a field with area greater than 256 m2

(16 m × 16 m) was selected as the sample plot. We created those plots over the available
fine resolution GF-1 WFV images. In addition to training samples, a total of 530 points
were kept aside for validation.

3. Methodology

3.1. Segmentation of multi-temporal GF-1 WFV images

GF-1 WFV images were segmented into homogeneous objects using one of the most
popular multi-resolution segmentation (MRS) algorithms for OBIA in eCognition
Developer 8.7. MRS algorithm uses a bottom-up region merging technique that starts
from the pixel level and iteratively aggregates pixels into objects. Spatially adjacent
segments are merged based on the degree of heterogeneity that is largely defined by
the scale parameter. To avoid time-consuming trial-and-error and subjective selection of
the scale parameter, Estimation of Scale Parameter 2(ESP2) was used for assisting the
segmentation to dictate the size and homogeneity of the resultant objects in an
automated way (Drăguţ et al. 2014). The fundamental idea of ESP2 is to select the
segmentation scales based on the rate of change for the calculated local variance of
object heterogeneity at various scales. The scales corresponding to the peaks of the rate
of change were deemed as the appropriate segmentation parameters. The two mutually
exclusive parameters, i.e. colour and shape, determined the relative weighting of reflec-
tance and shape. The shape is composed of smoothness and compactness properties
and the total weighted value of smoothness and compactness equals one.

We used the blue, green, red, and near-infrared spectral bands of four GF-1 images in
the segmentation process. All multi-temporal bands were weighted equally for the
segmentation. A hierarchical segmentation approach was implemented in ESP2. Based
on a three-level hierarchy concept, we implemented an automated image segmentation
process at three default scale increments of 1, 10, and 100, with the start scale of 1 at
each level. The weights of colour and shape were set to 0.9 and 0.1, respectively. The
weights of smoothness and compactness were set to 0.5 and 0.5, respectively. After
setting the algorithm parameters of ESP2, the rate of change for the local variance was
calculated and then a scale parameter of 30 were selected as the potential scales which
corresponds to local maximum, resulting in 119,660 objects.

Table 2. Data sets used in the study.
Satellite Sensor Acquisition date Crop developing status

GF-1 WFV1 24 April 2014 No crop cover
GF-1 WFV3 24 May 2014 Green-up
GF-1 WFV3 25 July 2014 Maturity
GF-1 WFV2 24 September 2014 Senescence
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3.2. z-Score for feature selection

The MRS approach provides the possibility of evaluating new spectral, textural, and
spatial features at the object level. Canopy structure, leaf pigment, leaf water, planting
patterns, and soil background not only highly relate to the reflectance signal captured
by the sensor and the derived vegetation indices but also define the spatial structural
and textural attributes of every crop at the field scale (Drăguţ et al. 2014). Thus, we
calculated a set of 166 object features, which were categorized in three groups (Table 3):
(1) object spectral information based on mean and standard deviation (SD) values as
well as vegetation indices, (2) object textural information based upon the grey-level co-
occurrence matrix (GLCM), and (3) object spatial information based on shape or colour.

The essence of crop classification is to minimize the spectral variability within (Δintra)
and maximize the spectral difference between (Δinter) pairwise comparisons of crops.
Previous studies proposed separability metrics based on statistical theory. These pair-
wise separability metrics are used to detect the spectral variability within (Δintra) and
between (Δinter) species, which was already used to evaluate the spectro-temporal
separability and to select the optimal features for classification (Somers and Asner 2013).

Compared with the well-known JM distance, a statistical measurement of z-score is
more compatible with eCognition’s exported objects. Furthermore, similarly to the
widely used separability index (Hu et al. 2016), the z-score is a pairwise measure of
class separability based on the probability distributions of two classes and is calculated
as (Kreyszig 1979):

z-score ¼ Δinterði; jÞ
Δintraði; jÞ ¼

Xi � Xj
�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σi2

ni
þ σj2

nj

q (1)

where Xi and Xj are the mean variable values for land-cover class i and class j, respec-
tively, and σi and σj are the SD of classes i and j, respectively. ni and nj represent the

sample sizes for classes i and j. Xi � Xj
�� �� reflects the interclass variability. Given different

weights to account for the different sample sizes of each class,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σi2=ni þ σj2=nj

p

Table 3. Description of features used in this study.
Category/name Layers for each pairwise

Object spectral
Mean (blue, green, red and near-infrared) 4 bands × 4 dates
Vegetation indices (RI, RVI,NDVI,EVI) 4 Vis × 4 dates
Standard deviation 4 bands × 4 dates
Object texture
GLCM entropy 4 bands × 4 dates
GLCM correlation 4 bands × 4 dates
GLCM dissimilarity 4 bands × 4 dates
Object spatial
Brightness 1
Compactness 1
Shape index 1
Length-width ratio 1
Rectangle 1
Density 1

RI, red vegetation index; RVI, ratio vegetation index; NDVI, normalized difference vegetation
index; EVI, enhanced vegetation index; VIs, vegetation indices.
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represents the intraclass variability. Thus, based on the input sample data, we can test
the z-score, and a separability for each pairwise crop class is estimated based on the
means and variances of the two crop classes in question.

3.3. SVM classification and accuracy assessment

All features were then classified using the SVM classifier. SVM is a non-parametric classifica-
tion approach that is based on a structural risk-minimization strategy and exploits a margin-
based criterion (Pal and Foody 2010). Given the ability of handling nonlinear separation
boundaries, generalizing well from a limited number of training samples, and supporting
high-dimensional feature inputs, SVM outperforms other classifiers, such as the Maximum
Likelihood Classifier, artificial neural networks, and Random Forests, when addressing
various purposes including land use/crop mapping (Alganci et al. 2013; Mountrakis et al.
2011). For non-linearly separable input spaces, a kernel function is employed to transform
the training data into a higher-dimensional feature space. In this study, the widely used
radial basis function (RBF) kernel was selected for this analysis. The RBF kernel relies on two
crucial parameters that need to be tuned. These include the gamma parameter (G) and the
regularization cost parameter (C), which determine the width of the kernel and the penalty
associated with misclassified training samples, respectively (Huang, Davis, and Townshend
2002). The G and C parameters were tuned by the function of ‘tune.svm’ with a grid search
method in the package ‘e1071’ of R Programming Language. The optimization iterates
through a 10-fold cross-validation, with the values of the G and C parameters ranging from
10–2 to 102. The parameters were ultimately set as 0.01 for G and 10 for C for feature sets.

According to the z-score value, backward feature selection was performed for the
best-performing SVM classifier in order to determine how to achieve comparable results
with a reduced number of features. Only when the accuracy of crop map was higher
than the threshold value, the backward elimination was carried out. The threshold value
should be set to be far below the expected accuracy (great than 85%). In this study, we
set the threshold value as 55%.

The tuned SVM was used to generate the crop classification map of the studied area.
For the classification map, we used 530 sample points for the accuracy assessment. The
confusion matrix method was applied to measure accuracy of the resulting classification.
The accuracy of crop classification was evaluated in terms of overall accuracy, producer’s
accuracy (PA), user’s accuracy (UA), and kappa coefficient (κ).

4. Results

4.1. The potential of each object-based feature for crop mapping

Figure 2 presented the z-score chart of each multi-temporal spectral and texture feature
for the pairwise crop classes. As the z-score value increases, the crop pairwise classes for
a given vegetation index became more separable, and the corresponding grid in the
chart becomes increasingly red. A z-score of 35.7 was observed for the ‘crop-soybean’
class, representing the highest separability for this specific pairwise responding to near-
infrared band in autumn. We observed more consistency in the change tendency of
z-score values among corn, soybean, and rice than between wheat and the other three
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crops. The near-infrared band and SD of the green band, with the z-score values of 24.5
in summer and 17.9 in autumn, respectively, performed better than the others for the
pairwise corn-rice. For the pairwise corn-wheat, the features extracted during the crop
green-up stage had a relatively higher z-score values due to the early development with
high-vegetation cover. When soybean and rice classes are considered, the near-infrared
band, SD of vegetation indices and GLCM entropy generally gave better results than the
other pairwise crop classes, generating z-score improvements. When only soybean and
wheat classes were considered, the separability of the z-score values was more signifi-
cant during wheat green-up (16.7 for RVI, 13.6 for NDVI, 11.9 for red, and 10.4 for RI,
respectively) but were insufficient to conclude that separating wheat from rice can be
improved by performing classifications in addition to the GLCM textures. Nevertheless,
GLCM entry when obtained from vegetation indices performed better for the pairwise
rice-wheat.

The sum of all two-class z-score were calculated (Figure 3). Among the 171 variables,
near-infrared has the highest z-score values of 79 when dominant crops were at the
mature stage. The pattern of the sum of z-score values for near-infrared was similar to its
derivatives, except that the SD of near-infrared band of the April image had relatively
higher z-score value for crops. Brightness worked well in the crop classification.
Additionally, GLCM texture extracted from vegetation indices and near-infrared band
were relevant when partial green leaves begin to turn yellow. Overall, spectral features
were more likely to be selected than texture or spatial features, and on average the
highest ranking features were mean near-infrared, red, NDVI, and RI.

4.2. The classification performance of feature sets

All of the features were ranked in descending order according to the z-score measure, and
a backward elimination technique was performed to iteratively remove the feature sets
with the least separability. We calculated the overall map accuracies by classifying with the

Figure 2. z-Score chart for the four crop classes of interest. Colours along the green to red colour
gradient denote the separability from good to poor, respectively. The horizontal and vertical axes of
the z-score chart represent the feature and time domains, respectively.
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remaining features (Figure 4). Each variable of the GF-1 data contributes to the improved
map accuracy. The trend is straightforward, although some of the variables contribute
relatively little. When all of the features were taken as input data, the overall classification
accuracy of 90.70% was first observed. The feature scenario (FS) corresponding to all the
input features was devised as FS1. The acceptable accuracy of FS1 showed the strong
ability of SVM in classifying a huge of number of variables without feature selection, even
though some of which may be highly correlated. Two special points were also of interest:
one providing for the highest accuracy (corresponding to FS2) and the other one provid-
ing for the biggest acceptable accuracy decrease (corresponding to FS3) when backward
elimination performing. Note that the overall accuracy achieved to 92.45% by using only
40 remaining variables in FS2. This optimal accuracy in FS2 was higher than FS1, as those
features effectively preserved the dynamic seasonal characteristics of the crops. The
overall performance achieves acceptable accuracies with the overall classification accu-
racy of 91.35% before removing the SD of green band obtained during the crop senes-
cence stage due to the relatively small noise influence. The largest variation of accuracy
arrives at 1.15% when there are only 13 variables left. Additionally, the accuracy sharply
dropped from 87.98% to 83.16% when the RVI from the green-up GF-1 image was

Figure 3. z-Score charts for multiple crops with the sum of each pairwise class.

Figure 4. Overall classification accuracies based on backward elimination of the least z-score
variable.
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removed, due to the fact that it is the time when wheat and the other crops showed the
greatest difference. Only features with a z-score value greater than 63 were retained,
ensuring the expected 85.00% of overall accuracy can be obtained. The optimal variables
for the key points marked in Figure 4 are listed in Table 4.

It is easily concluded that all of features used in the classification failed to provide
meaningful information to improve crop classification accuracy. Although SVM was
originally designed for supporting high-dimensional feature inputs, both noise from
misregistration of the multi-temporal GF-1 data and high correlations between the
features undermined crop map accuracy when substantial features were taken as
input data. Therefore, feature selection reduced the computation and at the same
time can efficiently search for an improved the classification accuracy.

4.3. The performance of different sample sizes

The effects of the number of training data on classification accuracy were evaluated
using the misclassification error rate (MER) (Figure 5). MER differences of the feature sets
ranged from 0.08% to 11.76% and varied with the training sample size. When the
number of training samples was between 10% and 30% of the entire sample size, the
MERs obtained with FS1 and FS3 changed significantly. When the training sample size
was 40% or 70% of the entire sample size, classification performances obtained with FS1
and FS3 were almost identical. FS1 provided relatively higher MER across the 10 training
sample sizes than classifications using FS2, except for a total of 40% sample points
selected. FS1 started with poorer classification performances for smaller training sample
sizes but had similar results as FS3 when using the 50% of training sample size. This
indicated that the inclusion of more features may lead to reduced map accuracy due to
a limited number of training samples. As expected, with the sample size increasing, the
MRE for FS3 sustained declined ranging from 13.97% to 8.59%. FS2 balanced the
computational cost and classification accuracy when larger than 80% of samples were
taken as input data with the MER difference not significantly changing. The slight
change of MER was attributed to reducing the risk of impacting by some atypical
samples. Thus, FS2 was almost the best-performing feature set at each of the training
sample sizes, providing the minimum MER at all 1777 field plots (MER < 11.15%). When
40% of samples were input into SVM with FS2, the lowest MER of 7.09% was obtained.

Table 4. Groups of the optimal variables for crop classification.
Feature
scenario Variables

Number of
feature set

FS1:all All features 166
FS2:the highest N7, N9, RI9, R5, RVI5, RI5, RVI9, NDVI9, NDVI5, EVI7, EVI9, B5, SD-G9, NDVI7, SD-R9,

EVI5, SD-N9, SD-R4, RI7, G5, RVI7, G9, SD-G4, SD-N4, N5, SD-EVI9, SD-B4, SD-RI9,
Brightness, SD-RVI4, SD-RVI7, SD-NDVI7, SD-RI4, SD-B9, SD-NDVI4, B9, SD-RVI5,
SD-NDVI9, R9, SD-RVI9

40

FS3:the biggest
change

N7, N9, RI9, R5, RVI5, RI5, RVI9, NDVI9, NDVI5, EVI7, EVI9, B5, SD-G9 13

Feature components: blue spectral band (B); green spectral band (G); red spectral band (R); near-infrared spectral band
(N); red vegetation index (RI); ratio vegetation index (RVI); normalized difference vegetation index (NDVI); enhanced
vegetation index (EVI); standard deviation of mean spectral feature (SD); extracted from the images acquired in April
(4); extracted from the images acquired in May (5); extracted from the images acquired in July (7); extracted from the
images acquired in September (9).
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4.4. Crop classification accuracy

The classifications of crop distribution using three different features and training sample
size were performed: the combination of FS1 and 80% of the entire training samples
represented the case of employing vast features and a huge number of training samples
for crop identification; the combination of FS3 and 80% of the entire training samples
represented the case where few features but a huge number of training samples for
crop identification; the combination of FS2 and 40% of the entire training samples
represented the case where few features and small training samples for crop identifica-
tion. The classification accuracies of each class, including PA and UA, are shown in
Table 5. We found the basic pattern of the PA and UA for each class was very similar.
Using all the input available provided by GF-1 WFV, and field samples, the map accuracy
was 90.85%. Compared with better classification from feature reduction, the 0.84% map
accuracy increase is small. Feature reduction was particularly helpful in wheat class
classification when combined with sufficient training sample data. Doing so resulted in
a PA of wheat higher than 70%. Except for rice and wheat, the PA and UA for corn,
soybean, and other classes all increased approximately 0.50–5.04% when features and
training samples were optimized compared to a redundant input.

The crop classification map using the 40% of the training samples based on the
optimal temporal spectral and spatial features corresponding to FS2 and SVM is shown
in Figure 6. This is mapped with an overall accuracy of 92.64%, reaching a κ of 0.8948.
Additionally, the backward feature selection strategy reduced the data redundancy and
contributed to improved results. The user’s accuracy, which is a measure of commission
error and indicates the probability that a category classified on the map actually
represents that category on the ground, ranged from 68.18% for wheat class to

Figure 5. Cross-validated MERs for crops using different training sample size.
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96.15% for the other classes. User accuracies were excellent for corn and soybean
(93.69% and 95.89%, respectively), but a completely mixed-free classification is unlikely
with actual field boundaries. The lowest user’s accuracy was attained for wheat, which
occurred in a small cultivated area. The producer’s accuracy of the individual categories,
which is a measure of omission error and indicated the probability of actual spatial
distribution being correctly classified, ranged from 89.29% for the others class to 97.67%
for rice class. The producer accuracy for rice was excellent, but the user accuracy was
only 79.25%. Therefore, the optimal input data applying for much finer spatial resolution
may greatly enhance the accuracy.

5. Discussions

In this study, we used a statistical measurement of z-score for the selection of optimal
features to classify crop types of interest at the object level and analyzed the influence
of the number of features and training samples on crop identification. The desired
accuracies were provided using optimal input data according to the z-score values.
We determined that z-score measure was helpful for the object-based feature selection
based on its ability to rank and reduce features, relatively low processing times, and
relatively high accuracy. The backward elimination technique for multiple crop cultiva-
tion also indicates the strengths of the temporal GF-1 data for crop mapping as its high
temporal and spatial resolutions effectively preserve the dynamic phenological charac-
teristics of crops. Since huge temporal and spatial features of new ‘both high’ sensors
are available at the global scale, there is great promise for crop mapping at regional
scales when it combined with feature selection based on z-score.

Previous studies have shown that rather than using a large volume of spectral,
temporal, and texture features, key features can achieve acceptable classification accu-
racy (Hao et al. 2015). The near-infrared band obtained the highest sum of all two-class
z-score, which indicated that this feature can play an important role in improvement of
classification accuracy. These results were consistent with the findings that the red and
near-infrared bands were more effective for crop classification (Zhu et al. 2012).
Additionally, spatial features, such as compactness, shape index, rectangle, or the ratio
between lengths and widths, performed poorly, which is also consistent with the
findings of Vieira et al. (2012), with classification accuracies less affected by the spatial
features than spectral or texture features. More importantly, the improvement of classi-
fication accuracy is straightforward when backward elimination technique is employed
as it iteratively removes features that do not contribute much to the classification.

Table 5. Accuracy for crop mapping based on different input data.
Feature scenario FS1 FS2 FS3

Sample size (%) 80 40 80
Accuracy (%) UA PA UA PA UA PA
Corn 93.10 96.60 93.69 95.41 92.34 94.91
Soybean 93.09 93.31 95.59 94.20 92.20 93.39
Rice 72.12 96.15 79.25 97.67 86.27 92.63
Wheat 61.36 93.10 68.18 93.75 70.27 96.30
Others 97.09 85.87 96.15 89.29 94.20 88.64
Overall accuracy 90.85 92.64 91.69
κ 0.8710 0.8948 0.8834
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The z-score method has the advantage of quantitative pairwise crop class separ-
ability. It has proven to be an excellent feature reduction and ranking tool.
Additionally, the results were easy to interpret. This criterion required few steps and
was easily compatible with object-based export. However, the z-score method has the
disadvantage of not being robustly scaled, which makes it inconvenient for comparing
separability of the same classes in different plots. We also acknowledge that the
z-score criterion provides values for separating only two classes. We suggest that
z-score criterion is appropriate if class separation distances are of interest, and if the
analyst desires to rank input features for two-class comparisons. In this study, we only
tested SVM classification using different sizes of training samples. Subsequent work will
compare z-score with the feature selection methods, such as JM, classification tree
analysis, and feature space optimization to assess the suitability of a particular feature
selection approach.

Figure 6. Classification map of multiple crops based on FS2 with 40% of training sample size.
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6. Conclusion

In this study, we presented and evaluated a method for mapping crop spatial distribution
at 16 m spatial resolution using multi-temporal GF-1 WFV data. We developed a statistical
measurement of z-score to estimate the feature contributions at the object level, focusing
on Beian City of China in 2014. The contributions of spectral, temporal, and spatial features
can be efficiently assessed to increase classification accuracies. Our analyses showed that
the separability of near-infrared band estimated by z-score compares well with the com-
mon view but the z-score has the disadvantage of lacking of fixed scale, which makes it
inconvenient for comparing separability of the same classes in different plots. The straight-
forward elimination results presented great potential of using ranked features based on
z-score, and ensured that the crop classes in question are discriminated effectively and with
sufficiently high accuracy. However, if the training sample size is too small (i.e. less than
40% of the entire training samples), atypical samples lead to unacceptable misclassification
errors. Therefore, we performed the crop classification by combining the top 40 features
and 40% of the entire training samples, and the desirable accuracy was 92.64%. Further
studies will investigate the validity of these findings when the z-score metric is applied to
classifications of larger areas based on a dense satellite image time series.
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